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T	he improvements in numerical weather prediction  
	(NWP) over the last half century may overall be  
	considered as an outcome of a straightforward 

extrapolation of technologies: increase of model 
resolution; relaxations of the dynamical approxima-
tions, from the quasigeostrophic to the primitive 
equation system, and with the removal of the hydro-
static balance approximation; introduction of more 
complex physics as well as parameterizations;1 and a 
more careful procedure for preparation of the forecast 
initial conditions. These model upgrades have been 
rather dramatic, thanks to an exponential growth in 
computer capabilities. In turn, these upgrades have 
contributed to the steady improvements of NWP 
forecast performance to date (cf. Bauer et al. 2015).

The effort to straightforwardly extrapolate techno-
logical capability has reached such a level that opera-

tional regional forecast models are now running with 
horizontal mesh sizes of 1–5 km worldwide. For ex-
ample, in Europe, the French AROME (Applications de 
la Recherche à l’Opérationnel à Méso-Echelle) forecasts 
over France are run operationally with a grid spacing 
of 1.3 km, the Met Office in the United Kingdom 
uses a grid spacing of 1.5 km, and MeteoSwiss runs 
the Consortium for Small-Scale Modeling (COSMO) 
model with a grid spacing of 1.1 km.

NWP capacity has reached a critical threshold: 
NWP models now begin to resolve individual convec-
tive elements within multicell, mesoscale, and synop-
tic-scale storms (i.e., they are “convection permitting” 
models). This tendency to higher resolution will 
continue: it is planned that the COSMO model will 
be run with a horizontal grid spacing of 500 m by 
2020, and thus convection will be more resolved. A 
goal of convective-scale NWP is to accurately fore-
cast high-impact storms, including their locations 
and intensities, which has the potential to bring a 
wide range of benefits to society. Forecast guidance 
from convective-scale NWP is already operationally 
available today. At the same time, this threshold also 

1	Note that, unlike the common custom in atmospheric 
modeling, the present essay strictly distinguishes between 
physics and parameterizations: physics always refers to 
explicit physical processes, whereas parameterization always 
refers to subgrid-scale processes.

Numerical weather prediction models are increasing in resolution and becoming capable 

of explicitly representing individual convective storms, but we do not yet know if it is the 

improved resolution that is leading to better forecasts.
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marks an end of straightforward extrapolation of 
technologies for NWP, even in the crudest sense: the 
convective-scale regime is very different from the 
well-studied synoptic weather regime, calling for a 
qualitatively different approach. The transition to 
forecasting at the convective scale is hardly a matter 
of straightforward extrapolation. There are several 
important gaps in our understanding: our basic and 
overall theoretical understanding of this regime is 
much weaker than for the synoptic-scale regime. The 
convective-scale regime is far more complex, even 
more so than as suggested by existing theoretical 
studies on convective dynamics (e.g., Moncrieff and 
Green 1972; Thorpe et al. 1982; Rotunno et al. 1988; 
Yano and Plant 2012).

Though specific issues for convective-scale NWP 
may be found discussed in the literature, the big-
picture view is missing: we can properly tackle the 
convective-scale NWP problems only by taking into 
account the full breadth of all the issues. Some of 
these challenges are particularly problematic: the 
convection-permitting regime is sometimes called the 
“gray zone,” referring to a transition from a regime in 
which convection is fully parameterized to a regime 
in which convection is fully resolved, especially in 
the convection community. However, we should not 
reduce the problems of this regime just to that of con-
vection parameterization. The extent of the challenge 
at the convective scale becomes apparent only when 
seeing all of the challenges together.

The practical issues faced by European weather 
services may be understood by the fact that, for 
example, a typical public user requirement in 
Switzerland would be a prediction of precipitation 
in a specific valley. A more specific example is a 
thunderstorm event at the Belgian music festival 
Pukkelpop in August 2011 (de Meutter et al. 2015). 
During the music festival, at which about 60,000 
people were present, a short-lived downburst 
occurred. Five people were killed and at least 140 
were injured. An operational failure to predict this 
downburst event was something to be criticized 
from a public perspective, although the downburst 
had a width of only 100 m and so was far too small 
to be resolved by current operational NWP models.2 
Weather services naturally need to follow those 
public expectations. In responding to such expec-
tations from the public, we also need to shift the 
focus to the finer scales and more fully exploit the 
information from convective-scale NWPs.

The present essay has emerged from a sense 
of an urgent need for action within Europe-
an NWP consortia—Aire Limitée Adaptation 
Dynamique Développement International (ALA-
DIN), COSMO, and High Resolution Limited Area 
Model (HIRLAM)—in responding to these chal-
lenges. This essay complements previous BAMS 
articles, including Mass et al. (2002), Fritsch and 
Carbone (2004), Mass (2006), Stensrud et al. (2009), 
and Sun et al. (2014). As discussed therein, we clearly 
acknowledge that currently there are extensive 
research efforts at the operational level to improve 
convective-scale NWP by exploiting various exist-
ing observations as well as modeling techniques. 
The main emphasis put forward in the present 
essay is an urgent need to properly address more 
fundamental theoretical issues. With our lack of 
basic understanding of this regime, current efforts 
will sooner or later otherwise become deadlocked. 
A good awareness of these more fundamental issues 
and of the limits of the current operational efforts 
is crucial just for good continuation of the current 
progress, even though those fundamental problems 
may not be immediately solvable.

To keep a reasonable focus, so that we can dis-
cuss the issues in depth, this essay addresses only 
the most basic theoretical issues. We recognize that 
other issues could be equally important, such as 
observation-related issues, but here we limit ourselves 
to only discussing these in the theoretical context. We 

2	See further discussion on the parameterization problems in 
the “Parameterization” section.
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clearly acknowledge the current operational efforts 
are of crucial importance, but for the sake of keeping 
focus, they are not covered herein.

In the next section, these fundamental issues are 
examined one by one. Discussions begin with the 
most basic issues of partial differential equations 
(PDEs), then turn to the issues of f luid mechanics, 
and then gradually move to more operational issues. 
Though the argument as a whole evolves over the 
section, since the issues to be discussed are so 
extensive each subsection on an issue is written in 
an almost stand-alone manner for ease of reading. 
In this manner, this essay provides a full breadth of 
the most fundamental problems of the convective-
scale NWP.

SCIENTIFIC CHALLENGES. Partial differential 
equation problem. The synoptic weather system of the 
103-km scale can be described by the primitive equa-
tion system under hydrostatic balance. The basic 
mathematical structure of this system is relatively 
well understood (Petcu et al. 2009). This is in stark 
contrast to the nonhydrostatic anelastic system, a 
standard formulation adopted for convective-scale 
modeling.3 This system is far more difficult to 
analyze mathematically, and hence it is much less 
well known.

The synoptic-scale weather system can, further-
more, be approximated by quasigeostrophy or, alter-
natively and better, by semigeostrophy, based on the 
fact that the system exhibits a close balance between 
the Coriolis and the pressure-gradient forces. This 
basic feature enables us to understand, to a large extent, 
synoptic-scale weather in terms of balanced dynamics 
(cf. Leith 1980).

Unfortunately, under the convective-scale regime, 
we lose these basic balances of the system, making 
it much harder to understand the fundamental 
characteristics of the system. Even a basic proof of 
nonsingularity associated with latent heating has 
only recently been established for the simplest case 
(Temam and Tribbia 2014). Understanding of these 
flows may partially be accomplished by identifying 
a wide variety of subsystems defined as asymptotic 
limits. However, such an understanding requires 
a much broader knowledge of f luid dynamics and 
thermodynamics, even without considering full 
microphysics, than for the traditional synoptic-scale 
system. However, these subsystems under various 

asymptotic limits occupy only a small fraction of the 
vast parameter space in the convective-scale regime. 
No asymptotic representation is likely to be identified 
in a bulk part of this regime.

Though all these aspects may sound purely math-
ematical, our lack of understanding at this most basic 
level hinders crucial progress at more practical levels 
(see “Numerics” section).

Dynamical system. Synoptic-scale f lows may be 
understood as a type of dynamical system because 
mathematically they reside on a slow stable manifold 
(Leith 1980), which is only weakly coupled to the 
much more complex dynamics of smaller-scale 
convection. Thus, dynamics on these scales can be 
described with a relatively limited number of effec-
tive degrees of freedom, that is, low-dimensional 
dynamics like Lorenz’s (1963) strange attractor. 
Furthermore, such an effective low dimensionality 
of the system guarantees relatively stable, reliable, 
long-term model forecasts, even though the evolution 
may be somehow chaotic.

In the convective-scale regime, on the other 
hand, although a wide variety of asymptotic regimes 
emerge, nothing equivalent to geostrophic balance is 
found: the effective dimension of the system is sud-
denly increased. As a result, the dynamical system 
approach mostly developed for low-dimensional 
systems no longer works effectively. Furthermore, 
this transition severely restricts predictability (see 
“Probability” section).

Turbulence. Atmospheric flows are turbulent at almost 
all the scales of practical interest according to a 
standard definition of turbulence in fluid mechanics 
based on the Reynolds number, which measures the 
importance of nonlinearity relative to viscous dissipa-
tion (e.g., Fritsch 1995). Unfortunately, this feature is 
often neglected due to a custom of calling planetary 
boundary layer (PBL) turbulence “atmospheric tur-
bulence,” leaving an impression that turbulence is 
only found in the PBL of the atmosphere. It is also 
typical that a distinction is made between turbulence 
and convection, which further adds to the impression 
that atmospheric convection is not turbulent. While 
the nature of turbulence within convective cells is 
non-Kolmogorov, and so has different properties to 
that typically found in the PBL, it is fundamentally 
a turbulent process.

3	Strictly speaking, many operational models do not follow the anelastic formulation, but adopt the fully compressible 
formulation. However, these models are still designed not to fully resolve the sound waves by adopting semi-implicit methods 
for the time integration.
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At the synoptic scale, the turbulent nature of 
the f low is limited by the stratification and rota-
tion of the atmosphere and so tends to be quasi 
two-dimensional. An important feature of two-
dimensional turbulence is that the energy is overall 
transferred from smaller scales to larger scales (an 
inverse cascade). As a result, atmospheric flows tend 
to be organized at larger scales, which maintains a 
relative smoothness of the f low (cf. Tennekes 1978). 
This property of two-dimensional turbulence allows 
us to treat synoptic-scale flows as a low-dimensional 
dynamical system.

On the other hand, once the horizontal scale of 
the system reaches below O(10) km, the aspect ratio 
of the f low becomes unity,4 hydrostatic balance is 
no longer satisfied, there is no longer constraint 
from rotation, and the f low becomes fully three-
dimensional: this is the essence of the convective 
scale. These f lows are far more complex than 
two-dimensional turbulence, more transient and 
intermittent (i.e., they lack balance), and they are 
associated with a much larger degree of freedom. 
Thus, three-dimensional turbulent f lows are much 
harder to predict than the chaotic system found in 
low-dimensional dynamical systems: in the fully 
turbulent regime, the number of active modes keeps 
increasing with increasing resolution and predic-
tion becomes increasingly harder with no sign of 
convergence.

To understand fully three-dimensional convec-
tive atmospheric turbulence, the basic nature of 
the energy interactions between these many active 
modes in the system should first be properly un-
derstood. In fully three-dimensional turbulence, 
energy is predicted to be transferred overall to the 
smaller scales, but some of the energy at smaller 
scales is also transferred to the larger scales, leading 
to a tendency for organized convection. Although 
the basic mechanism of organized atmospheric 
convection is classically attributed to vertical wind 
shear (cf. Moncrieff and Green 1972; Thorpe et al. 
1982; Rotunno et al. 1988), its full mechanism from 
a point of view of full turbulence dynamics is still 
to be established (cf. Yano et al. 2012). Here, we also 
need to move beyond a conventional framework of 
interactions between convection and the large scale 
toward a true multiscale framework.

Our current understanding of turbulent flows is 
essentially based on a straightforward extrapolation 
of Kolmogorov’s theory for homogeneous, three-
dimensional turbulence (cf. Zilitinkevich et al. 2013). 
Existence of the stratification and an active role of 
buoyancy are likely to qualitatively change the basic 
nature of the f low. Such an investigation into the 
fundamental nature of self-organized turbulence has 
not yet been accomplished.

Predictability. The predictability of atmospheric flows 
is fundamentally limited because the errors in predic-
tion exceed the typical amplitude of a signal of a given 
scale at a certain point in time. Once the error exceeds 
this amplitude, the prediction loses any practical 
value, although it is always possible to run an NWP 
model beyond this limit.

The fully turbulent nature of the convective-scale 
regime limits the predictability more severely than for 
low-dimensional chaotic flows (cf. Palmer et al. 2014). 
In a chaotic system, an error of the initial condition 
limits the predictability. In principle, the predictabil-
ity can always be extended by defining the initial con-
dition more accurately. However, in a fully turbulent 
regime, the accuracy of the initial condition no longer 
ultimately limits the predictability (Sun and Zhang 
2016), although a denser observational network may 
extend the predictability to some extent. Rather, the 
intrinsic nature of the flow itself (notably its intermit-
tency) becomes the ultimate limiting factor. More 
observations by, for example, a denser network, do 
not overcome this intrinsic predictability limit.

On the other hand, one may wish that the pre-
dictability of synoptic scale would be improved by 
explicitly resolved convection rather than an unreli-
able parameterized convection. However, even this is 
not obvious considering the complex multiple-scale 
interactions of the turbulent f lows associated with 
convection (see “Turbulence” section).

Probability. The predictability of convective systems is 
about a few hours (e.g., Hoheneger and Schär 2007), 
but this is not a fixed number. In some situations, 
the convective system is strongly controlled by a 
synoptic-scale process, giving a longer predictability. 
It is also spatially dependent. Detailed surface data 
(vegetation, soil types, topography) may further help 

4	Observation (cf. Nastrom and Gage 1985) shows that the slope of the kinetic energy spectrum as a function of the wavenumber 
k turns from k−3, as expected for the two-dimensional turbulence, to k−5/3 at about the few-hundred-kilometer scale (roughly 
corresponding to the radius of the deformation) in a virtual contradiction to this aspect ratio argument. This regime with 
a k−5/3 spectrum above the 10-km scale (often called “stratified turbulence”) is still quasi two-dimensional, arising from a 
strong influence of the stratification on this scale range (cf. Lindborg 2006).
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to extend the predictability. Identifying situations 
with enhanced predictability is an important forecast 
issue in convective-scale NWP.

However, regardless of its precise value, there 
always exists a limit beyond which a forecast becomes 
so uncertain that it loses any deterministic usefulness. 
As a result, when an NWP model is run for a few 
days, as is the basic strategy of the NWP community 
(e.g., ALADIN, COSMO, HIRLAM, Met Office), the 
resulting forecast can only be interpreted in terms of 
probabilities: we cannot say precisely when and where 
an afternoon shower should be expected on the next 
day, but only give a probability distribution in time 
and space. In this manner, convective-scale NWP 
must be inherently based on probability.

Unfortunately, probability is not an easy concept 
to understand.5 It is true that there are already many 
methodologies for predicting the probability of 
weather events (e.g., Schwartz et al. 2010). A typi-
cally adopted approach is to estimate a probability 
by creating a large sample or ensemble. However, the 
frequency of an event within a certain sample is not 
equivalent to a probability of a single unique event of 
particular interest. Such frequency-based thinking 
may be helpful for analyzing a homogeneous sequence 
of tries (or events), such as the tossing of a coin or dice. 
In contrast, a sequence of rainfall events is hardly 
“homogeneous”: each event happens under unique 
circumstances. In this case, a different probability 
must be assigned for each rainfall event, without 
creating a sample.

The current standard methodology for estimating 
weather probabilities, the ensemble prediction system 
(EPS), is also based on this sample space-based 
thinking (cf. Leith 1974). Although the EPS is indeed 
a useful approach, it does not predict by itself a prob-
ability in any obvious manner: 3 rain forecasts out of 
10 ensemble members does not automatically mean 
a 30% chance of rain, unless the sample is defined in 
a homogeneous manner. Generating such a homoge-
neous sample with a reasonable, finite ensemble size 
is not a simple matter, and it becomes more difficult 
for a system with an increasing number of unstable 
modes (cf. Uboldi and Trevisan 2015).

Frequency and probability must carefully be dis-
tinguished from each other, as Bayesian probability 

teaches us (cf. Jaynes 2003). Furthermore, any proba-
bilistic prediction system should be derived, ideally, 
from the basic physical principle for predicting 
probability, that is, the Liouville equation (Yano and 
Ouchtar 2017), although its practical use may appear 
difficult (see “Data assimilation” section).

Stochasticity. Prediction of individual convective 
events is so difficult that it is tempting to deal with 
them as random events arising from stochasticities. 
Such a formulation also more naturally leads to a 
probabilistic description. However, we have to be 
cautious in proceeding in this manner.

Some of the physical processes may be intrinsically 
stochastic: Brownian motion is a classic example. 
Many complex microphysical processes that do not 
provide simple closed analytical expressions, for ex-
ample, generation rate of the secondary ice crystals 
by a collision of two ice particles (Yano and Phillips 
2016), may also be best considered to be stochastic. 
Following this line of reasoning, one may wish to 
consider any noisiness in a system as a consequence 
of stochasticity. However, such reasoning is not nec-
essarily justified. For example, although turbulent 
flows are extremely noisy, their physics is completely 
deterministic and presented in a closed form by 
the Navier–Stokes equations: a relatively simple 
nonlinearity can easily produce a noisy time series. 
The choice between using a stochastic or nonlinear 
representation of a given process must therefore be 
made carefully.

We should also realize that noisiness at short time 
scales and small spatial scales does not necessarily 
lead to a stochastic inf luence at larger scales: the 
two levels of the processes must be carefully distin-
guished from each other. The method of homog-
enization developed under multiscale asymptotic 
expansions (Pavliotis and Stuart 2007) provides a 
rigorous procedure for assessing whether the large-
scale inf luences of those noise-like features are 
actually stochastic.

Generally speaking, we should not assume that 
all the difficulties in predicting the convective-
scale regime arise from randomness: adding more 
stochasticity is not necessarily a solution. We should 
also carefully distinguish between the intrinsic 

5	 Note that the probability is even not a measurable quantity. For example, if a 30% probability of rain is verified by actual rain 30% 
of the time, this probability forecast is statistically consistent with the observation. However, this is not a sufficient condition 
to verify it. The true verification must be performed on the probability forecast for each event (or nonevent) individually. Of 
course, this is not possible, because the actual realization is rain or no rain without an intermediate state. In other words, we 
can never measure a probability observationally for an individual event, but only in a statistical sense. However, the latter is 
not sufficient for the verification.
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stochasticity in physics and the stochasticity intro-
duced as an artificial device in parameterizations. 
The latter must be addressed with more mathematical 
rigor (cf. Berner et al. 2017).

Data assimilation. As the horizontal resolution of NWP 
models increases, a denser observational network is 
also required. However, simply increasing the number 
of observations is not enough. NWP models require 
more information than is being measured: observa-
tions generally do not cover the entire model domain, 
and more importantly, observed quantities are often 
only indirectly related to model variables. Methodolo-
gies for estimating the model state from observations 
come from nonlinear filtering and optimal control 
theory (Jazwinski 1970; Crisan and Rozovskii 2011), 
also referred to as data assimilation (DA; cf. Kalnay 
2002) in geosciences.

The full problem of DA consists of estimating 
the so-called posterior probability: that is, the 
probability of the model system state based on the 
observations as well as on our general knowledge of 
the system (prior information). This problem can be 
formally solved by invoking the Bayesian theorem 
(cf. Jaynes 2003). The Liouville equation (or its gen-
eralization including stochastic forcing) predicts 
the time evolution of the probability. However, such 
a formal approach has so far been seen as unsuit-
able for NWP applications: the vast dimension of 
the systems involved renders impractical even just 
estimating the probabilities, let alone computing 
their time evolution.

To simplify the problem, Gaussian approximation 
has often been introduced so that only the mean and 
covariance of the uncertainty probability must be 
computed. The two most widely adopted DA methods 
for operational NWP, four-dimensional variational 
data assimilation (4DVar: Talagrand and Courtier 
1987) and the ensemble Kalman filter (EnKF; Evensen 
2009), adopt this simplification. To be even more 
practical, operational DA is further simplified by 
tuning the DA to just a single dominant scale, usually 
the synoptic scale.

On the other hand, as model resolution increases, 
new phenomena are resolved on a broader range of 
scales, including convection, and so DA must also 
be designed to simultaneously keep control on all 
resolved scales. Studies suggest that this problem 
may, in principle, be solved by 4DVar (Lorenc and 
Payne 2007) and EnKF (Snyder and Zhang 2003). 
However, even more changes in DAs are required to 
efficiently deal with two main features inherent at 
the convective scale: i) a much faster and intermittent 

error growth rate (see “Predictability” section) and 
ii) the nonlinear and non-Gaussian characters of the 
underlying dynamics and error statistics.

The first issue is intimately related to the concept 
of observability (cf. Jazwinski 1970), which may be 
defined as the problem of identifying the minimum 
spatiotemporal observational density to efficiently 
counteract error growth (Quinn and Abarbanel 
2010). Observability is a necessary condition for the 
stability of a DA solution, which is in turn a necessary 
condition to reduce the state-estimation (and predic-
tion) error (Carrassi et al. 2008). Observability can be 
achieved through development of the observational 
network itself as well as of the DA procedure. The 
former includes, for example, the development of 
a C-band dual-polarization Doppler radar network 
under the European Operational Program for 
Exchange of Weather Radar Information (OPERA; 
Huuskonen et al. 2014). Surface measurement (e.g., 
soil moisture) networks with sufficient spatiotempo-
ral resolution also contribute, although they are still 
to be strengthened over Europe.

There are several approaches for dealing with 
the second issue, including the rank histogram 
filter applied to Kalman filter methods (Anderson 
2010). However, the most fundamental approach for 
dealing with this issue is to turn to a more basic prin-
ciple based on fully Bayesian Monte Carlo methods 
[particle filters (PFs); Doucet et al. 2000]. A problem 
with PFs is that the number of particles required for 
accurate performance grows exponentially as the 
system’s dimension increases (Bocquet et al. 2010). 
Choosing the importance proposal densities that 
give a larger overlap with the conditional density may 
delay the filter collapse, or even prevent it (Slivinski 
and Snyder 2016). Hybrid EnKF–PF methods are 
promising alternative approaches to this problem 
(Chustagulprom et al. 2016). The development of 
advanced PFs for DA in convection-permitting NWP 
models will be an important priority for the coming 
years (cf. Poterjoy et al. 2017).

Cloud microphysics. Increasing model resolution also 
demands more sophisticated physics. Unfortunately, 
the issues of physics are vast. Here, we deliberately 
limit our discussions to the cloud microphysics be-
cause of its unique status.

Our knowledge of microphysical processes coming 
both from laboratory and theoretical studies is quite 
extensive (cf. Pruppacher and Klett 1997), although 
our knowledge is hardly perfect and the existing bin 
microphysics parameterizations certainly do not 
make full use of this knowledge. At the same time, 
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even the current bin microphysical schemes are still 
too expensive to use for convective-scale NWPs. In 
short, we know the microphysics too well, and we 
have to somehow simplify it for it to be included 
in operational NWP models while maintaining a 
reasonable model run speed. The main problem 
with current microphysical modeling is that these 
simplifications are made in a rather arbitrary manner 
without performing any systematic “investment gain” 
analysis. For example, one can find many articles in 
the literature claiming an improvement of a model 
by upgrading, for example, from a single-moment 
to a double-moment scheme. However, a carefully 
balanced judgment is often missing on relative gain 
against a given investment. Here, Bayesian decision 
theory (Berger 1985) may be called for. A solid first 
step toward this direction is taken by, for example, 
van Lier-Walqui et al. (2014).

The benefits of implementing more realistic, and 
more complex, descriptions of cloud microphys-
ics may appear enormous: hail damage could be 
better estimated by fully considering the hail size 
and hardness (Phillips et al. 2014), and winter pre-
cipitation (due to ice, liquid, or a mixture of both) 
may be better predicted by using a more detailed 
description of the melting process (e.g., Phillips et al. 
2007). However, in the convective-scale regime, the 
expected improvements may not be attainable: with 
convective-scale turbulence intrinsically interacting 
with the enhanced cloud microphysics, an increase 
in the complexity of the microphysics may not 
automatically lead to a more reliable forecast, but 
may lead merely to higher forecast uncertainties as if 
adding white noise. A suitable level of sophistication 
in deterministic physics (not only microphysics, but 
surface processes, radiation, etc.) must be objectively 
and quantitatively assessed, with this aspect being 
fully taken into account.

Parameterization. The role of subgrid-scale param-
eterizations becomes more subtle as convection starts 
to become explicitly resolved. In traditional NWP 
models, individual convective storms are key elements 
to be parameterized. Under the convection-permitting 
regime, these parameterizations become almost 
unnecessary. In fact, most operational convection-
permitting NWP models turn off the deep-convection 
parameterization. However, the threshold resolution 
for turning it off is not well established.

It is more likely that the transition toward a situ-
ation where it is no longer necessary to parameterize 
deep convection should be more gradual, and cer-
tain intermediate procedures are required in this 

transition regime (e.g., Gerard et al. 2009). These 
procedures should be performed without traditional 
parameterization assumptions such as scale separa-
tion and quasi equilibrium. Some studies propose a 
stochastic formulation (e.g., Plant and Craig 2008), 
although a formal formulation analysis shows that 
the system remains deterministic even without these 
traditional assumptions (Yano 2014).

The focus is likely to shift to the PBL (Ching et al. 
2014). However, many new parameterization issues 
also arise there, including those for subcloud scales 
of deep convection: it is very likely that the turbu-
lent mixing between the clouds and the immediate 
environment must be described more carefully than 
traditional entrainment–detrainment descriptions 
(cf. de Rooy et al. 2013).

Overall, we face challenges for subgrid-scale 
parameterizations from two sides. On the one side, 
we need to further elaborate existing parameter-
izations (e.g., deep and shallow convection, PBL). 
On the other side, we also need to introduce new 
parameterizations, for example, for the subcloud-
scale processes. It naturally follows that the consis-
tencies between the existing and the new param-
eterizations must also be carefully established. The 
interactions between various subgrid-scale processes, 
for example, between the PBL and convection, also 
become more critically important.

To effectively tackle all these problems together, 
we face issues of consistency and unification. Here, 
we propose that the best solution would be to de-
velop a single consistent unit of subgrid-scale pa-
rameterizations by returning to the first principles 
of explicit physics (e.g., a large-eddy simulation PDE 
system), and to reconstruct everything from there. 
For specific procedures, see Yano et al. (2015) and 
Yano (2016). Rebuilding everything from scratch is 
often much faster, in the end, than trying to unify 
something already in place, but developed without 
much regard for mutual consistencies. These more 
robust parameterizations are, furthermore, expected 
to make the subgrid-scale information more prac-
tically useful in forecasts (cf. Kain et al. 2010; de 
Meutter et al. 2015).

Numerics. In the traditional synoptic-scale regime, 
which in essence resides on a low-dimensional 
dynamical system, increases in spatial resolution 
have, overall, contributed to a better convergence 
of the forecast quality. On the other hand, in the 
convective-scale regime, with so many modes ac-
tively involved in the dynamics, solutions of the 
governing equations are computable with much 
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smaller accuracy at any practical resolution, and 
the solutions do not converge with increasing reso-
lution. For example, the Met Office Unified Model 
finds no tendency toward forecast convergence when 
increasing horizontal grid spacing from 1.5 km to 
100 m (Stein et al. 2015), since the increase of hori-
zontal resolution gradually resolves more turbulent 
processes. As a conventional wisdom, grid spacings 
at least as fine as O(101–102) m are required for 
large-eddy simulations (LESs) to be meaningful. 
The typical convection-permitting grid spacing is 
only just comparable to the size of the largest eddies 
within the PBL.

Prominent flow features are often realized right 
at the limit of the model resolution in convection-
permitting scale simulations, making the simulations 
sensitive to details of subgrid-scale parameteriza-
tions as well as to the properties of the numerical 
algorithms. As a result, some artifacts in outputs 
may result. For example, investigating the flow over 
a heated plane, Piotrowski et al. (2009) find that 
anisotropic viscosity can artificially produce realistic-
looking regular structures that mimic naturally 
generated Rayleigh–Bernard cells. Clearly, verifica-
tion of these numerical results critically depends on 
the availability of theoretically and mathematically 
correct solutions of the PDEs, which can help provide 
a more rigorously defined testing and selection of 
the numerical algorithms suitable for convection-
resolving computations.

Among the numerical algorithms, advection is 
common to every physical variable and therefore of 
particular importance. A good advection scheme 
must conserve the sign and the shape of a variable 
to be advected, when the system is purely advective, 
by suppressing artificial oscillations and numerical 
diffusion. Some advection schemes suppress numeri-
cal diffusion by introducing an antidiffusion term 
(limiter). For example, the “flux corrected transport” 
method, as adopted by, for example, Smolarkiewicz 
(2006), constructs advective f luxes as weighted 
averages of a f lux computed by a monotonic, but 
diffusive, low-order scheme and a f lux computed 
by a high-order scheme so as to suppress unphysical 
behavior.

Semi-Lagrangian schemes (Staniforth and Côté 
1991) are popular among NWP models because 
they permit a relatively large time step while still 
allowing the model to run smoothly. However, 
we must be cautious with their application to the 
turbulent convective-scale regime (cf. Lauritzen 
et al. 2011). Although some successful turbulent 
applications may be found in the literature, semi-

Lagrangian schemes work most efficiently for a 
relatively laminar f low.

In convective-scale turbulent calculations, the 
numerics must be robust.6 Particular attention 
is required for the dynamical core, including the 
treatment of advection. Though no explicit discus-
sion is provided herein, attention must also be equally 
paid to the numerical solver for the physics and the 
subgrid-scale parameterization (Dubal et al. 2006; 
Termonia and Hamdi 2007).

CONCLUSIONS. We have identified the following 
fundamental theoretical challenges in convective-
scale NWPs:

•	 PDE: A lack of proper understanding both of the 
dynamics and the partial differential equations 
describing this regime poses serious difficulty, 
especially for the verification of numerical model 
results.

•	 Turbulence: A theory of turbulence must be de-
veloped going beyond the traditional approaches 
based on relatively straightforward extrapolation 
of Kolmogorov’s theory for homogeneous turbu-
lence, to the buoyancy-driven stratified case.

•	 Probability: Probability becomes a key variable 
to be predicted, because NWP models are run 
for much longer time scales (a few days) than the 
predictability limit (a few hours). The intrinsic 
probability, as defined by the Bayesian probabil-
ity theory, should be evaluated rather than the 
oft-used estimation of probability by frequency 
counting. The Liouville equation, as a basic physi-
cal principle of probability prediction, should be 
further exploited to accomplish this.

•	 Data assimilation: New assimilation approaches 
such as the particle filters must be pursued because 
the traditional assumptions of quasi linearity and 
Gaussian distributions are no longer valid.

•	 Observational network: Although the develop-
ment of a denser observational network may 
be crucial, it is meaningful only under the con-
straints of observability. Moreover, the intrinsic 
limit of predictability (a few hours) due to the 
fully turbulent nature of the convective-scale 
regime ultimately prevents us from extending 

6	In certain situations, “robust” only narrowly refers to 
whether a given scheme is conditionally stable. On the other 
hand, here we use this notion in the more general sense 
that given numerics are not only stable, and insensitive to 
a change of the resolution, etc., but also preserve the basic 
numerical properties predicted by theory.
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predictability through the inclusion of more 
observations.

•	 Stochasticity: Stochasticity must be introduced 
into forecast models in a more robust and solid 
manner, for example, based on the method of 
homogenization under multiscale asymptotic 
expansions. It is important to keep in mind that 
more than a mere existence of fluctuations is re-
quired to justify the introduction of stochasticity 
into physics.

•	 Physics: The degree of sophistication of the model 
physics, notably of the cloud microphysics, must be 
decided by investment-gain analysis, for example, 
based on Bayesian decision theory. Some of the 
physical processes may be better represented 
simply as a stochasticity.

•	 Parameterizations: Subgrid-scale parameteriza-
tions should be redeveloped from scratch in a 
unified manner, starting from a basic set of equa-
tions for the physics and dynamics, as given by, 
for example, LES models, so that universality and 
consistency are ensured.

•	 Numerics: The fully turbulent nature of the 
convective-scale regime demands that the 
numerical algorithms be much more robust than 
in traditional NWP models, especially to avoid 
generation of artificially organized structures at 
the scale of the model resolution.

Each research direct ion requires its own 
substantial investments, augmenting current efforts 
and being subject to development of more detailed 
research strategies. We do not even pretend that 
these investigations are easy. For example, at this 
stage, it would be impossible to make any progress 
with the convective-scale regime as a PDE problem 
if the traditional, rigorous methodologies are to be 
applied; a completely different approach would be 
required here. On the other hand, the assimilation 
problem can be addressed more easily as a continu-
ation of the current efforts. Intensive investments 
into the currently existing top-end methodologies 
are likely to lead to breakthroughs in the relatively 
short term.

It is also crucial to extensively exploit existing 
knowledge from non–atmospheric science litera-
ture, for example, from turbulence research. These 
fundamental scientific issues require our rethink-
ing and restructuring, but also redirecting of some 
non–atmospheric science research to more fundamen-
tal problems. For example, non-Kolmogorov turbu-
lence is not solely an atmospheric problem, but it has 
much wider applications. A well-organized research 

network, as well as supporting funding, would be re-
quired so that highly multidisciplinary research may 
be formed to address these problems in full.
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